Solutions Math 220 HW # 10 November 29, 2018

Exercise 1. Let $A = \{2, 3, 4\}$ and $B = \{6, 8, 10\}$ and define a binary relation R from A to B by xRy if and only if x|y.

- (a) Is 4R6? Is 4R8? Is $(3,8) \in R$? Is $(2,10) \in R$?
- (b) Write R as a set of ordered pairs. Solution.
- (a) (i) No, (ii) Yes, (iii) No, (iv) Yes
- (b) $R = \{(2,6), (2,8), (2,10), (3,6), (4,8)\}.$

Exercise 2. Let $n \in \mathbb{N}$. Define a relation \sim on \mathbb{Z} by $a \sim b$ if and only if $a \equiv b \mod n$. Show that \sim is reflexive, symmetric, and transitive. Proof.

- (1) \sim is reflexive: Let $a \in \mathbb{Z}$. Then since a - a = 0, we know that n|(a - a) because n|0, so $a \sim a$.
- (2) \sim is symmetric: Suppose $a \sim b$. Then $a \equiv b \mod n$, or n|(a-b). This means a-b=nk for some $k \in \mathbb{Z}$. It then follows that

$$b - a = -(a - b) = -nk = n(-k)$$

which shows that n|(b-a) hence $b \equiv a \mod n$. Therefore $b \sim a$.

(3) \sim is transitive:

Suppose that $a \sim b$ and $b \sim c$. Then a - b = nk and b - c = nl for some $k, l \in \mathbb{Z}$. Adding these two statements gives

$$(a-b) + (b-c) = nk + nl \iff a-c = n(k+l).$$

Thus $a \equiv c \mod n$ and so $a \sim c$.